목록분류 전체보기 (235)
![](http://i1.daumcdn.net/thumb/C400x400/?fname=https://blog.kakaocdn.net/dn/wymbW/btsDJEEzhRq/hYBPxPkH7MXPKYFJgfXqzK/img.png)
https://www.khan.co.kr/opinion/column/article/201907292040005 [직설]소년의 마음으로 쓰는 소년의 글 박민규 작가가 말하길, 좋은 글은 두 가지로 나뉜댔다. 노인의 마음으로 쓴 소년의 글. 혹은 ... www.khan.co.kr
![](http://i1.daumcdn.net/thumb/C400x400/?fname=https://blog.kakaocdn.net/dn/QVbzx/btsslbTFMSS/pAnzcvybi1RPlnH8VIwzfK/img.png)
model https://www.statlect.com/glossary/statistical-model Statistical model | Definition, examples, types Statistical model by Marco Taboga, PhD A statistical model is a set of assumptions about the probability distribution that generated some observed data. Examples We provide here some examples of statistical models. Example In the previous example, the rand www.statlect.com linear regression ..
![](http://i1.daumcdn.net/thumb/C400x400/?fname=https://blog.kakaocdn.net/dn/beZb7z/btsdZOMGOFL/ky2CkwQA9964pCBcM9klz1/img.png)
#Comment ## Notation # Explanatory variables : X = t(x1,x2,...,xp) # Real-valued response : Y # Training data : D = {(xi,yi)|i=1,..n} # General model : Yi = f(xi)+입실론i, e~N(0,sigma^2) # Estimate the regression function : f(x).hat = E(Y|X) # 즉 X가 주어졌을 때 y의 기대값으로 function을 추정하는게 핵심 ##Variable # y가 가질 수 있는 값을 실수 -oo ~ oo까지 # x가 가질 수 있는 값은 # 1 quantitive input(X), 2 categorical(dummy codig을 통해) # 3 ..
![](http://i1.daumcdn.net/thumb/C400x400/?fname=https://blog.kakaocdn.net/dn/bnP3vG/btsd3foTD5h/OiHZQxGaRfCcEOi8L0WKbK/img.png)
# 0. Install "ISLR2" package install.packages("ISLR2") library(ISLR2) # 1. Preparation of "Auto" Dataset #dimension 392 * 9 dim(Auto) View(Auto) head(Auto) #mission value 확인 sum(is.na(Auto)) #na.omit로 missing value 제거하면 dimension 392 * 9 Auto
![](http://i1.daumcdn.net/thumb/C400x400/?fname=https://blog.kakaocdn.net/dn/c8jXbS/btsshsVXbso/80MrrWRqijXL7YG5b7oCLK/img.png)
https://gregorygundersen.com/blog/2019/11/28/asymptotic-normality-mle/ Asymptotic Normality of Maximum Likelihood Estimators Given a statistical model Pθ\mathbb{P}_{\theta}Pθ and a random variable X∼Pθ0X \sim \mathbb{P}_{\theta_0}X∼Pθ0 where θ0\theta_0θ0 are the true generative parameters, maximum likelihood estimation (MLE) finds a point estimate θ^N\hat{ gregorygundersen.com
![](http://i1.daumcdn.net/thumb/C400x400/?fname=https://blog.kakaocdn.net/dn/lDGS2/btssgqYA8fa/KMwfF2kgHhpolrXtL1fRw0/img.png)
https://medium.com/intuitionmath/what-is-column-space-with-a-machine-learning-example-8f8a8d4ec6c What is column space? (with a Machine Learning example) When people say vector space, column space, subspace, etc., what do they mean by “SPACE”? medium.com calculs만으로 회귀분석을 바라봤겠지만 선형대수학을 통해 우리는 geomtric관점으로 직관적으로 이해할 수 있었다. 선형대수학이 행렬을 통해 다차워의 변수들을 다루는것도 장점이지만 더 중요하게 생각하는 것은 바로 그림으로 이해할 수 있게하는 것 whe..