본문 바로가기

Proof : Gauss Markov theorem 본문

Reference

Proof : Gauss Markov theorem

TaeTrix 2024. 2. 14. 20:51

 

https://pages.stat.wisc.edu/~st849-1/lectures/Ch04.pdf

 

 

https://math.stackexchange.com/questions/1542602/proof-of-gauss-markov-theorem

 

Proof of Gauss-Markov theorem

Theorem: Let $Y=X\beta+\varepsilon$ where $$Y\in\mathcal M_{n\times 1}(\mathbb R),$$ $$X\in \mathcal M_{n\times p}(\mathbb R),$$ $$\beta\in\mathcal M_{n\times 1}(\mathbb R ),$$ and $$\varepsilon\in\

math.stackexchange.com

 

 

 

https://math.stackexchange.com/questions/4305202/what-makes-inequality-true-in-proof-of-gauss-markov-theorem

 

What makes inequality true in proof of Gauss Markov theorem

Elsewhere on this site, I found a very compact proof of the Gauss-Markov theorem, seen below. I don't understand the justification for the middle step with the inequality. Specifically, what proper...

math.stackexchange.com

 

 

https://gregorygundersen.com/blog/2022/02/08/gauss-markov-theorem/

 

The Gauss–Markov Theorem

Informally, the Gauss–Markov theorem states that, under certain conditions, the ordinary least squares (OLS) estimator is the best linear model we can use. This is a powerful claim. Formally, the theorem states the following: Gauss–Markov theorem. In a

gregorygundersen.com

 

'Reference' 카테고리의 다른 글

Positive Definite Matrix  (0) 2024.02.19
Singular Value Decomposition & Optimization  (0) 2024.02.16
Ridge & LASSO property reference  (0) 2024.02.09
Kernel PCA  (0) 2024.01.30
Bootstrap for time series data  (0) 2024.01.24
Comments